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Abstract—We consider the problem of estimating a struc-
tured high-dimensional parameter vector using random Gaussian
quadratic samples. This problem is a generalization of the
classical problem of phase retrieval and impacts numerous prob-
lems in computational imaging. We provide a generic algorithm
based on alternating minimization that, if properly initialized,
achieves information-theoretically optimal sample complexity. In
essence, we show that solving a system of random quadratic
equations with structural constraints is (nearly) as easy as
solving the corresponding linear system with the same constraints,
if a proper initial guess of the solution is available. As an
immediate consequence, our approach improves upon the best
known existing sample complexity results for phase retrieval
(structured or otherwise). We support our theory via several
numerical experiments.

A full version of this paper is accessible at: https://
gaurijagatap.github.io/assets/ ISIT18.pdf

I. INTRODUCTION

Motivation: Our focus in this paper is the following con-
strained estimation problem. An unknown vector of parameters,
x∗ ∈ Rn, is observed (or measured) to yield observations
y ∈ Rm of the form:

yi = |〈ai,x∗〉|p , i = [m], s.t. x∗ ∈Ms (1)

where Ms ⊂ Rn is a model set that reflects the structural
constraints on x∗. We adopt the familiar setting of under-
determined Gaussian observations, A = [a1 . . . ai . . . am]> ∈
Rm×n with m < n. The task is to recover an estimate of
x∗ from either absolute-value (p = 1) or quadratic (p = 2)
measurements y1.

An important application of the aforementioned setup is the
classical signal processing problem of phase retrieval. Here,
the measurements correspond to the magnitudes of complex
2D Fourier (or Short Time Fourier) transform coefficients.
The sensing apparatus is incapable of detecting phase of the
complex light-field reflected or transmitted from the illuminated
object source. This necessitates a phase recovery strategy, and
proposed solution approaches been explored dating back to the
1970s via several works [1], [2]. Recent, renewed interest by
the statistical learning community in this problem has focused
on the case of Gaussian observations, and have spawned several
algorithms which are efficient as well as asymptotically (near)
optimal [3]–[6]. However, even in the best case, one requires
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m > 2n − 1 [6] measurements, and in the case of high
dimension n, the sample complexity m can be very large.

Similarly, polynomial neural networks enable applications
such as classification, where the activation functions are
quadratic mappings [7]. The problem in (1) then corresponds
to learning weights of a single neuron, x∗, for m Gaussian
distributed training examples ai, and yi being the corresponding
output labels. The task is to design efficient algorithms for
learning weights using fewer training samples.

To reduce sample complexity of such problems, several
works introduce sparsity assumptions. Sparsity has been used
to great advantage in compressive sensing and streaming
algorithms [8], [9], and establish an information theoretically
optimal [10] requirement of O

(
s log n

s

)
samples for stable

recovery of x∗ from linear measurements. Sparsity assump-
tions for inverting quadratic (or magnitude-only) equations
of the form (1) has similarly helped lower computational
and memory requirements [5], [11]–[13]. Specifically, several
papers consider the problem in (1), where Ms represents
all s-sparse vectors x∗, with the assumption of a Gaussian
observation framework [14]–[16]. In previous work [16], [17],
we have proposed a sparse phase retrieval algorithm called
CoPRAM, which is linearly convergent and improves upon
all other algorithms, obtaining a Gaussian sample complexity
of O

(
s2 log n

)
in general ( O (s log n) if power-law decaying

sparse signals are considered [17]).
A natural extension of sparsity is the notion of structured

sparsity. Several works in compressed sensing and statistical
learning have utilized various structures such as blocks, clusters,
and trees [18], [19]. Block structures in the context of sparse
phase retrieval have been studied in [16]. Tree structures are
popularly found in applications where sparsity is considered in
wavelet basis [20]. While the impact of structured sparsity has
been studied thoroughly for the case of linear measurements
[21], recovery from quadratic or magnitude-only measurements
is relatively less understood.

Our contributions: In this paper, we propose a new algo-
rithmic framework called Model-based CoPRAM to solve the
problem of phase retrieval of signals with underlying structured
sparsity. Our framework is fairly generic and succeeds for
parameters belonging to any structured sparsity model (defined
formally below). Moreover, we provably show that if the
algorithm is properly initialized, then its sample complexity is
information-theoretically optimal. In particular, we analyze a
special instantiation of our framework, called Tree CoPRAM,



Fig. 1: A binary wavelet tree for a one-dimensional signal. The
squares denote the large wavelet coefficients that arise from
the discontinuities in the piecewise smooth signal drawn below.
Figure taken from [22].
which is applicable in the case of rooted s-sparse tree structures
for x∗, and demonstrate the superior performance of our method
both in theory and numerical simulations. In essence, our
contributions imply that solving a system of under-determined
quadratic equations under structural constraints is (essentially)
as easy as solving the corresponding linear system under the
same constraints, provided a good initial guess is available.

Techniques: The algorithmic techniques used in this pa-
per are a combination of two focal points: (i) alternating
minimization based sparse signal recovery from phaseless
measurements (via our previous work on CoPRAM [16]),
(ii) using a structured-sparsity promoting subroutine called
ModelApprox (e.g. TreeApprox [22] in the context of tree-
structured sparsity), which replaces the standard s-sparse
projection rule used to enforce sparsity. Additionally, we also
design a novel initialization heuristic, which yields an initial
estimate x0 that is very close to x∗ in practice. Our main
theoretical contribution is a generalization of a recent result of
[23] to the case where x∗ belongs to a known model set Ms.

II. BACKGROUND

A. Structured sparsity

We provide some background for the problem formulation in
(1). A vector x∗ ∈ Rn is said to be s-sparse if it has no more
than s non-zero entries. We use S := {j|x∗j 6= 0} to indicate
the true support of x∗, such that |S| ≤ s. The model notation
Ms is introduced as an indicator set comprising of all vectors
which follow a given structural constraint, underscored with
parameter s. Let Ms denote the set of all allowable supports
{S1 . . . Si . . . SN}, such that Si ⊆ [n] and |Si| ≤ s, then
Ms = {x ∈ Rn| supp(x) ∈Ms}. As a special case, Ms can
be a model representing all s-sparse rooted tree supports, as
illustrated in Figure 1.

B. Model-based CoSaMP

Model-based CoSaMP (Compressive Sensing using Matching
Pursuit) [19] is a popular technique to recover structured (for
example tree) s-sparse vectors or signals x̃∗ ∈ Rn from linear
observations ỹ ∈ Rm of the form:

ỹ = Ãx̃∗,

where Ã ∈ Rm×n and m < n. The sensing matrix Ã is
required to satisfy model-RIP [19], with constant δMs

, such
that for all x̃ ∈Ms, the following holds:

(1− δMs) ‖x̃‖
2
2 ≤

∥∥∥Ãx̃
∥∥∥2
2
≤ (1 + δMs) ‖x̃‖

2
2 .

This holds trivially, if the entries of Ã, ãij are distributed
according to normal distributionN (0, 1/

√
m). Model CoSaMP

solves the following minimization approximately:

min
x̃∈Ms

∥∥∥ỹ − Ãx̃
∥∥∥2
2
. (2)

Model-based CoSaMP (also referred as ModelCoSaMP), uti-
lizes a model-based approximation stage (referred to as Mod-
elApprox). A specific instantiation of Model-based CoSaMP,
Tree CoSaMP employs an exact or approximate tree projection
subroutine called TreeApprox [22], [24], to ensure that the
output of the minimization in (2), x̃+, belongs to the model
Ms. This approach is largely parameter free and only requires
knowledge of signal sparsity s and assumption of tree structure.

C. Phaseless signal recovery

The recovery problem can be expressed by constructing a
loss function of the form:

min
x∈Ms

m∑
i=1

(yi − |〈ai,x〉|p)
2
. (3)

where p = 1 or p = 2. Gradient descent based approaches
popularly use the Wirtinger Flow (which solves the quadratic
variant, p = 2) [4], [14], [23], [25], [26] and Amplitude
Flow (which solves the magnitude-only variant, p = 1) [6],
[15], [27] approaches, to calculate the explicit gradient of
the objective function in (3) composed of either squared
or magnitude-only measurements. In this paper, we use the
alternating minimization approach [2], with magnitude-only
measurements (p = 1), by introducing a new variable to
represent the missing phase information, hence linearizing
the problem. We then update the phase variable and signal
variable in an alternating fashion. In the signal estimation
stage, we employ the Model-based CoSaMP algorithm to
obtain a structurally sparse vector estimate. To evaluate the
distance of the x-estimate from x∗, we introduce the expression
dist (x1,x2) := min(‖x1 − x2‖2, ‖x1 + x2‖2) for every
x1,x2 ∈ Rn. This method is discussed in further detail in
Section III-A.

D. Spectral initialization

Non-convex approaches for phase retrieval [4], [5] rely on
a spectral initialization technique to ensure that the initial
estimate x0 is within a δ0-ball radius of the true solution x∗.
This is required to establish subsequent convergence of descent
based algorithms. For this, one can construct an estimator
matrix M = 1

m

∑m
i=1 y

2
i aia

>
i , and use the top left-singular

vector of this matrix as an appropriate initialization. Sparse
modifications of this strategy involve detecting (partial) support
information from the diagonal of the estimator matrix M, by
using an approximate projection onto model Ms. This method
is discussed in further detail in Section III-B.

III. ALGORITHM

In this section, we propose a new algorithm for solving the
tree sparse phase retrieval problem and analyze its performance.
We use a spectral initialization, followed by an alternating



Algorithm 1 Model-based CoPRAM

Input: A,y, s, t0

1: Compute signal power: φ2 = 1
m

∑m
i=1 y

2
i .

2: Compute: diag(M) := Mjj =
1
m

∑m
i=1 y

2
i a

2
ij for j = [n].

3: Set: Ŝ ← MODELAPPROX(diag(M)).
4: Set: v1 ← top s.v. of MŜ = 1

m

∑m
i=1 y

2
i aiŜai

T
Ŝ

.
5: Compute: v ∈ Rn ← v1 for Ŝ, and 0 for Ŝc.
6: Compute: x0 ← φv .

7: for t = 0, · · · , t0 − 1 do
8: pt+1 ← sign (Axt),
9: xt+1 = MODELCOSAMP( 1√

m
A, 1√

m
pt+1 ◦ y,s,xt).

10: end for

Output: xt0 ← xt.

minimization based descent approach, similar to our previous
work in [16]. Our algorithm is largely parameter-free except
for knowledge of the underlying sparsity s. Moreover, the
theoretical analysis requires no extra assumptions on the
parameter vector, except that its support belongs to a structured
sparsity model. We call our algorithm Model-based CoPRAM,
which generalizes our previous algorithm called CoPRAM (or
Compressive Phase Retrieval with Alternating Minimization)
[16], [17]. The algorithm can be broken down into three types
of update stages: (i) initialization; (ii) phase estimation; and (iii)
signal estimation. The full algorithm is presented in pseudo-
code form as Algorithm 1. The phase and signal estimation
stages are described in detail in the Section III-A. Due to the
simplicity of our algorithm, it can easily be extended to a
general class of signals defined by any model Ms. In this
paper, we focus on the special case where the model Ms

corresponds to tree-sparse vectors in Rn.

A. Convergence of Model-based CoPRAM
This part of the algorithm is described in Lines 7-10 of

Algorithm 1. Once we obtain a good enough initial estimate
x0 ∈ Ms such that dist

(
x0,x∗

)
≤ δ0 ‖x∗‖2, we construct

a method to accurately estimate the true x∗. To achieve this,
we adapt the alternating minimization approach from [5]. The
observation model in (1) can be restated as follows:

sign (〈ai,x∗〉) ◦ yi = 〈ai,x∗〉 ,
for all i = {1, 2, . . .m}. We denote the phase vector p ∈ Rm
as a vector that contains the unknown signs of the measure-
ments, i.e., pi = sign (〈ai,x〉) for all i = {1, 2, . . .m}. Let
p∗ denote the true phase vector and let P denote the set
of all phase vectors, i.e. P = {p : pi = ±1, ∀i}. Then our
measurement model gets modified as:

p∗ ◦ y = Ax∗.

The loss function in (3) gets modified and is composed of two
variables x and p,

min
x∈Ms,p∈P

‖Ax− p ◦ y‖2 (4)

Note that the problem above is not convex, because p ∈ P is
a set of all vectors with entries constrained to be in {−1, 1}.
Instead, we alternate between estimating p and x. We perform
two estimation steps: (i) if we fix the signal estimate x, then
the minimizer p ∈ P is given in closed form as:

p = sign (Ax) , (5)

(phase estimation, Line 8 of Algorithm 1);
(ii) if we fix the phase vector p, the signal vector x ∈Ms is
obtained by solving a (structured) sparse recovery problem,

min
x∈Ms

1√
m
‖Ax− p ◦ y‖2, (6)

if m < n and A√
m

satisfies the model-RIP as defined above.
(signal estimation, Line 9 of Algorithm 1).

Here, we employ the Model-based CoSaMP [19] algorithm
to (approximately) solve (6). Note that since (6) itself is a non-
convex problem, exact minimization can be hard. However, in
each signal estimation step, we do not need to explicitly obtain
the minimizer; we can still show a sufficient descent criterion by
unpackin the analysis of the Model-based CoSaMP algorithm.
For analysis reasons, we require that the entries of the input
sensing matrix are distributed according to N (0, 1/

√
m). This

can be achieved by scaling down the inputs to Model-based
CoSaMP: At,pt+1 ◦ y by a factor of

√
m. We also use a

“warm start" Model-based CoSaMP routine for the (t+ 1)th

update of x, xt+1, for each iteration where the initial guess of
the solution to (6) is given by the current signal estimate xt.

We now analyze our proposed descent scheme. We obtain
the following theoretical result:

Theorem III.1. Given an initialization x0 ∈ Ms satisfying
dist

(
x0,x∗

)
≤ δ0 ‖x∗‖2, for 0 < δ0 < 1, if we have number

of Gaussian measurements,

m > C (s+ card(M4s)) ,

then the iterates xt+1 of Algorithm 1, satisfy:

dist
(
xt+1,x∗

)
≤ ρ0dist

(
xt,x∗

)
, (7)

where xt,xt+1,x∗ ∈Ms, and 0 < ρ0 < 1 is a constant, with
probability greater than 1− e−γm, for positive constant γ.

Proof sketch: Via an algebraic derivation similar to the one
provided in [17], the per-iteration error for the tth iteration
of Alg. 1, with L iterations of Model-based CoSaMP, can be
derived as:∥∥xt+1 − x∗

∥∥
2
≤ (ρ1ρ3)

L
∥∥x∗ − xt

∥∥
2
+

(ρ1ρ4 + ρ2)

(1− ρ1ρ3)
‖Eph‖2 ,

(8)

where ρ1, ρ2, ρ3, ρ4 are appropriate constants, and Eph is
the error in estimating phase in the tth run of Model-based
CoPRAM. The second part of this proof requires a bound on
the phase error term ‖Eph‖2, which can be analytically derived
as:

‖Eph‖22 =
4

m

m∑
i=1

(
a>i x

∗)2 · 1{sign(aixt) sign(aix∗)=−1}.



We bound this term by invoking Lemma III.2.

Lemma III.2. As long as the initial estimate is a small distance
away from the true signal x∗ ∈Ms, dist

(
x0,x∗

)
≤ δ0 ‖x∗‖2,

and subsequently, dist (xt,x∗) ≤ δ0 ‖x∗‖2, where xt is the
tth update of Algorithm 1, then the following bound holds,

4

m

m∑
i=1

(
a>i x

∗)2 · 1{(a>i xt)(a>i x∗)≤0} ≤ ρ
2
5

∥∥xt − x∗
∥∥2
2
,

with probability greater than 1 − e−γ2m, where γ2 is a
positive constant, as long as m > C (s+ card(M4s)) and
ρ25 = 0.0256.

We therefore achieve a per-step error reduction scheme of
the form: ∥∥xt+1 − x∗

∥∥
2
≤ ρ0

∥∥xt − x∗
∥∥
2
,

if the initial estimate x0 satisfies
∥∥x0 − x∗

∥∥
2
≤ δ0 ‖x∗‖2, and

this result can be trivially extended to the case where the initial
estimate x0 satisfies

∥∥x0 + x∗
∥∥
2
≤ δ0 ‖x∗‖2, hence giving

the convergence criterion of the form (for ρ0 < 1):

dist
(
xt+1,x∗

)
≤ ρ0dist

(
xt,x∗

)
.

The complete proof of Theorem III.1 and Lemma III.2 can
be found in Appendix A of the full paper [28]. We present a
corollary of Theorem III.1 for tree sparse signals.

Corollary III.3. As a consequence of Theorem III.1, if Ms is
a model representing rooted tree sparse signals with sparsity s,
then Algorithm 1 is linearly convergent and requires a Gaussian
sample complexity of m > Cs, as long as the initialization x0

satisfies dist
(
x0,x∗

)
≤ δ0 ‖x∗‖2.

The proof of this corollary can be found in Appendix A
of the full version of this paper [28]. Observe that m = O(s)
samples are necessary for reconstructing any s-sparse parameter
vector even in the linear case (where perfect phase information
is available), and therefore Theorem III.1 implies information-
theoretic optimality (up to constants) of our proposed approach.

B. Initialization of Model-based CoPRAM

The first stage (Lines 1-6 of Algorithm 1) of Model-based
CoPRAM uses a spectral initialization approach, similar to that
provided in previous sparse phase retrieval methods [5], [14]–
[16], [26]. We construct a biased estimator of the squared true
signal coefficients, which we call the signal marginal matrix:

M =
1

m

m∑
i=1

y2i aia
>
i .

The jth signal coefficient can be estimated from the the diagonal
term Mjj =

1
m

∑m
i=1 y

2
i a

2
ij , and the set of all Mjj’s can be

calculated in O (mn) time. The approximate support estimate
Ŝ can be extracted by performing an exact or approximate tree
projection algorithm [22] on the n-dimensional diagonal of the
marginal matrix M. From this we obtain the sub-matrix MŜ ,
whose rows and columns are projected onto Ŝ. This is followed
by a spectral technique ( [5], [14]–[16]), which extracts the

top left singular vector (s.v.) of M to construct a good initial
estimate x0 (Lines 4-6 of Algorithm 1).

To provide the intuition behind this strategy, we leverage the
fact that the diagonal elements of the expectation matrix E [M]
are given by E [Mjj ] = ‖x∗‖2 + 2x∗2j . The signal marginals
Mjj corresponding to j ∈ S are larger, in expectation, than
those corresponding to j ∈ Sc. Therefore the signal marginals
Mjj serve as a good indicator to extract an approximate
support Ŝ of x∗. We additionally impose structure Ms to
this sparse initial vector, by utilizing an approximate model
projection algorithm (such as tree projection [22]) (Line 3
of Algorithm 1). We demonstrate experimentally that this
initialization strategy produces a good estimate of x∗. We do
not have a full theoretical characterization of the initialization
stage, and intend to pursue this in future work.

IV. EXPERIMENTS

In this section, we present experimental results to demon-
strate the empirical advantages of Model-based CoPRAM
(specifically, for the tree-sparsity model) over standard sparse
phase retrieval algorithms (specifically, CoPRAM [16] which
provides the best available empirical performance for the
standard case). We consider two different sizes (32× 32 and
64 × 64) of an image of Rice University’s Lovett Hall as
shown in Figure 2. This image is modeled as sparse in the
Haar wavelet basis, with the number of levels of decomposition
are chosen to be log2 n where n is the number of image pixels.

Fig. 2: Image considered for simulations, resized to 32× 32
and 64× 64 pixels, considered to be sparse in Haar basis.

The Tree CoPRAM and CoPRAM algorithms were run for
the following experimental settings: n = 1024 and n = 4096.
The original image x̂ was sparsified by fixing s and picking
the top s- wavelet coefficients of x̂. This sparsified image is
considered to be the s-sparse tree structured ground truth x∗.

Phase transitions: We demonstrate the superior perfor-
mance of the Tree CoPRAM algorithm in comparison to
CoPRAM, through a series of phase transition graphs and
diagrams. In Figure 3, we illustrate two different settings of
sparsities for n = 1024 dimensional x∗: s = 10 and s = 31,
and compare the performances of CoPRAM and Tree CoPRAM
by plotting the variation in the number of measurements m on
the horizontal axis and the probability of successful recovery
(fraction of trials in which ‖xt0 − x∗‖2 / ‖x∗‖2 ≤ 0.05). It is
clear that far fewer samples are required for successful recovery,
when Tree CoPRAM is used instead of CoPRAM.

Figure 4 shows phase transitions for image size n=4096,
at different sparsities (s=10,20,31,41,51,61,72,82,92,102) and
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Fig. 3: Phase transitions for CoPRAM and Tree CoPRAM for
sparsities s=10 and s=31 on an n=1024 dimensional signal.
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Fig. 4: Phase transition diagrams for (a) CoPRAM (b) Tree
CoPRAM on signal of dimension n = 4096.
TABLE I: Average running time in seconds of Tree CoPRAM
v/s CoPRAM for n=1024.

Algorithm s=10,m=308 s=20,m=410 s=20,m=512
CoPRAM 0.0241 0.0455 0.0433

Tree CoPRAM 0.0119 0.0336 0.0302

number of measurements taking (approximately) uniform
integer values between m=52 and m=512. It is clear that
the phase transition plot of Tree CoPRAM demonstrates better
sample complexity w.r.t. CoPRAM.

Running time performance: In our final set of results, the
running time performance of Tree CoPRAM w.r.t CoPRAM is
tabulated in Table I.

The simulations were run using MATLAB R2017b on a
desktop computer with Intel Xeon E5-2620 processor with
12 CPUs at 2.4GHz and 64GB RAM. The comparative
performance of CoPRAM w.r.t. other sparse phase retrieval
algorithms has been discussed in Section 5 of [16].
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